
Introduction to Lambda Functions
AWS Lambda is an event-driven compute service introduced in 2014. It provi-
sions compute resources on-demand to execute code in response to events. Since
AWS manages the end-to-end provisioning of resources for Lambda, no underly-
ing server infrastructure is visible to developers. Therefore, it is widely known
as a fully managed Serverless compute solution.

A Lambda function can be written in a variety of programming languages. The
following example shows a Lambda function written using NodeJS looks like.

T-Mobile adopted a serverless first policy to develop its mission-critical plat-
forms. They utilized the event-driven nature of AWS Lambda to create triggers
for their database, S3 events, enabling them to scale up with demand effectively.
Furthermore, their development times increased by 90% thus, ensuring faster
release times as they do not have to maintain infrastructure.

Advantages using Lambda Functions
As you can see, there are several advantages of using Lambda that play a sig-
nificant role in its popularity. Let’s look at some of them in detail.

Resource Provisioning

AWS provisions the resources for Lambda on-demand, allowing it to scale well
for varying workloads. In addition, since AWS takes care of the infrastructure
to execute the function, developers only need to focus on writing the code that
leads to faster development times, increasing productivity.

Costs

Secondly, AWS bills Lambda functions for every millisecond it is executed and
the number of requests served by AWS Lambda.

Cross-Service Integrations

Additionally, Lambda functions seamlessly integrate with other AWS Services.
For instance:

1

1. You can use the AWS API Gateway connected to Lambda to develop an
end-to-end Serverless API. These Lambdas’ can communicate with databases
to fetch data for client requests.

Figure 01 - A Lambda function integrated with the API Gateway.

2. You can set up triggers in your database tables to perform actions when data
is persisted or removed.

Figure 02 - A Lambda function invoked by a DynamoDB table.

3. You can process data passed from SNS topics or Queues by setting up triggers
to provide quick responses to requests.

Figure 03 - A SNS Topic publishing data to a Lambda function

In addition, there are many other integrations, including AWS Lambda S3 trig-
ger, DynamoDB trigger, AppSync trigger.

However, along with all these benefits, moving to a Serverless stack using
Lambda also brings several challenges. Therefore, it is crucial to create aware-
ness to reduce their impact or avoid them altogether. So, let’s look at these
challenges in detail.

2

Addressing Latency in Lambda Functions
The main challenge of adopting Lambda is the latency it brings in typically with
cold starts. Besides, there are other reasons as well.

Cold Starts
A Lambda function is initialized in an execution environment only when its
invoked. Therefore it experiences delays during its first invocation. This is
considered a cold start.

Figure 04 - A Lambda function used in an API Gateway

Figure 04 shows a client making an HTTP request to fetch items from a
DynamoDB table via a Lambda function. When this request gets executed for
the first time, AWS Lambda will:

1. Create a new execution container environment.
2. Download the Lambda code.
3. Initialize the function module.
4. Execute the function code passing the event.

Steps 1 to 3 happen only in the first request made to the Lambda container
and can take more than 10 seconds to execute as the Lambda service must
search for warm containers, create new ones when none are available, and finally,
download/initialize the Lambda code before running it.

Additionally, this initialization time differs based on the initialization code size
and runtime environment (e.g Node.js, C#, Python).

An important note is that a single worker can process only one event at a time.
Although a single worker gets warm after its first invocation (for a period of
approximately the next 5 minutes), the cold start could still occur for concurrent
invocations. It happens since new workers get created for every concurrent
event.

As you can see, the main challenge with cold start is the adverse effect on
application performance. For example, Fidel, an API for linking Bank Cards to

3

https://www.serverless.com/blog/keep-your-lambdas-warm/
https://fidel.uk

applications, was heavily affected by cold starts when sending password reset
emails. This caused delays for users trying to gain access to their accounts,
potentially harming consumer trust in this application.

Therefore, cold starts must be addressed and fixed after analyzing your applica-
tion access patterns.

Memory Allocation to Lambda Functions
Another cause for Lambda latency happens with its memory configuration. By
default, AWS assigns 128MB of memory to your Lambda function. However,
since many developers go with the default configuration, its impact isn’t fully
realized without further analyzing its impact on Lambda performance.

Figure 05 - Default Memory Allocation to a Lambda Function

Besides, in Lambda, there is a direct proportionality between memory allocation
and CPU allocation. Lower the memory, lower the CPU allocated to the Lambda
function. Because of that, there is a clear impact on the code execution time
depending on the nature of the code and the Lambda memory configuration.

For example, if we allocate 128MB of memory for a code that demands high
CPU, network, or memory, it will:

• Impact the execution time and cold start.
• Incurring more cost since Lambda cost is tied with the execution time.
• Could even occasionally timeout resulting in costly retry operations.

Ultimately all these cause a delayed response time. This is why AWS recom-
mends allocating 128MB of memory for Lambda functions that don’t demand
performance such as those route events to other services. In contrast, Lambda
functions that communicate with Databases and Amazon S3 must undergo mem-
ory optimization.

Lambda Runtime Language
Some of you may wonder how the programming language in which we write the
Lambda function affects its performance. Although AWS provides the flexibility
of writing Lambda functions in various languages (Node.js, Java, Python, Go,
Ruby, C#), some perform better than others. Besides, specific programming
languages create latency during initialization and contribute to long cold starts,
causing high latency.

How does a programming language create longer cold starts?

4

https://www.serverless.com/blog/keep-your-lambdas-warm/
https://lumigo.io/blog/this-is-all-you-need-to-know-about-lambda-cold-starts/
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html

Java, C# requires AWS Lambda to bootstrap both the virtual environments and
runtimes to execute the code. Additionally, it requires all compiled resources
(including unused) to be imported to the function. This contributes to the cold
start duration taking more time for the Lambda function to complete its work.

Therefore, developers that use Java, C#, or any VM-dependent, statically typed
language to write Lambda functions unknowingly add overhead to their cold
start durations.

Service Integrations with Lambda Functions
So far we have discussed the latencies that occur during the initialization of
a Lambda function. Besides, Lambda functions can experience high latency
during execution time as well. It occurs due to the delays caused by the end
services integrating with the Lambda function.

For example, a Lambda function can integrate with:

1. DynamoDB to fetch or persist data.
2. Amazon S3 to retrieve or store an image asset.
3. Amazon EC2 to start or stop a Virtual Machine.

Let us look at a Lambda function that integrates with the API Gateway and
DynamoDB to understand how the end services add delay.

Figure 06 - Lambda integration with DynamoDB

The event sequence illustrated above shows an API Request invoking a Lambda
function to fetch data from DynamoDB and return the data to the client.

The end services (such as DynamoDB) contribute to the overall execution time
of the Lambda function. Here, the impact could vary from a few milliseconds to
multiple depending on the query or scan operation we perform. Besides, there
could be unexpected delays, if DynamoDB runs into errors. It happens since
AWS SDK retries the DynamoDB request for a default period of 10 times using
the exponential backoff algorithm with an initial delay at 50ms.

5

https://lumigo.io/learn/what-are-the-aws-lambda-supported-languages/
https://lumigo.io/learn/what-are-the-aws-lambda-supported-languages/

Figure 07 - Exponential Delay Period

However, services like API Gateway usually add a fixed latency to the Lambda
function which usually goes for several milliseconds. By default, a Lambda
function is set to time out at 3 seconds and can have a maximum of 29 seconds
when integrated with the API Gateway.

Therefore, it can cause the Lambda function to unnecessarily hang and create
response delays of up to 4 seconds (in a warm invocation) or more than 15
seconds in cases of a cold invocation. These delays are noticeable if a user is
waiting for the result and affect the overall user experience. For example, a
recent page load benchmark by Google indicated that sites having page load
times of up to 10 seconds have a bounce rate over 123%.

6

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales

Accelerating Lambda Functions
Modern applications need to perform well. The ones that perform poorly have
the risk of losing sales in drastic numbers.

Research conducted by Akamai Technologies in 2017 indicated that 100ms la-
tency could cause a 7% loss in revenue. This rate was at 1% in 2009 when
initially examined by Amazon. It shows that user experience is becoming criti-
cal in the coming years, and 100ms latency is not an option.

Therefore, it is crucial to fix latency issues in Lambda functions and improve
the overall application performance.

As we have observed before, the cold start is one of the major contributors to
poor Lambda functions. The good news is that there are five main ways to
mitigate cold-start delays.

1. Implementing function Warmers
2. Implementing Provisioned Concurrency
3. Optimizing the Worker Runtime Language and Memory Allocation
4. Using AWS Lambda Power Tuning

Implementing Function Warmers

The first approach we are going to discuss is using function warmers to reduce
cold start time. Function warmers ping a set of Lambda functions over a given
period using EventBridge Rules to keep the Lambda functions warm and their
workers active. This approach increases the probability of using a warm con-
tainer when we invoke the function using API Gateway or any other service,
thus, improving overall performance.

Let’s look at a step-by-step example of setting up a function warmer using
Serverless Framework. To do that all you need is the plugin - Serverless WarmUp
Plugin. It can be added to your project using the NPM command shown below.

npm i --save-dev serverless-plugin-warmup

The WarmUp plugin must be configured after adding it to your project by
declaring it in the plugins array in the plugins array in the serverless.yml
file, as shown below.

plugins:
 - serverless-plugin-warmup

After this, the warmer function must get permission to invoke selected Lambda
functions. This can be done by providing an IAM Role Statement, as shown
below.

provider:
name: aws
runtime: nodejs12.x
lambdaHashingVersion: 20201221

7

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales#:~:text=10%20years%20ago%2C%20Amazon%20found,5%20milliseconds%20behind%20the%20competition.
https://www.serverless.com/
https://www.serverless.com/plugins/serverless-plugin-warmup
https://www.serverless.com/plugins/serverless-plugin-warmup

 iamRoleStatements:
 - Effect: 'Allow'
 Action:- 'lambda:invokeFunction'
 Resource: "*"

Next you can configure the Lambda function to use the function warmer. This
can be done by adding the property warmer: true in the Lambda function
declaration in your serverless.yml.

functions:fetchAccountInformation:warmup: truehandler: handler.fetchAccountInformation

After this, the Lambda function must be provided with a condition to break
execution if triggered by the function warmer.

"use strict";

module.exports.fetchAccountInformation = async (event, context, callback) => {
if (event.source === "serverless-plugin-warmup") {

console.log("Triggered by Function Warmer To Keep Environment Warm");
callback(null, "Warming Lambda Up");

}
return {
statusCode: 200,
body: JSON.stringify({
message: "Go Serverless v2.0! Your function executed successfully!",

}),
};

};

After the function gets deployed, the function warmer will be triggered every 5
to 6 minutes, allowing the selected Lambdas to get invoked to keep them warm.
It ultimately increases performance by reducing latency.

However, AWS does not recommend function warmers in production workloads
as the function can experience cold starts when Lambda functions scale up with
traffic increase.

Implementing Provisioned Concurrency

AWS introduced Provisioned Concurrency to obtain consistent warm invoca-
tions with low latency in production workloads. It provides a way of preparing
workers before receiving traffic, hence, provisioned. Furthermore, it downloads
the function code, runs the initialization code, and keeps the worker on standby
in a warmed state, ensuring that the API Gateway can respond quickly with
low latency.

To enable Provisioned Concurrency:

1. Go to your Lambda function in the AWS Console.
2. Create a new version by publishing the function.
3. Navigate to Configuration.

8

https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/

4. Click “Edit” On Provisioned Concurrency.

Figure 08 - Viewing Provisioned Concurrency Setup Panel

5. Select the required workers (concurrency) to keep warm.

Figure 09 - Setting Required Workers for Lambda

6. Click Save, and the effect will take place in one minute.

Figure 10 - Configured Provisioned Concurrency

Note: As we added Provisioned Concurrency to a new version, the invoker must
call the newly published version of the function to use a warmed-up instance.
Provisioned Concurrency cannot be applied to the $LATEST version.

9

https://news.ycombinator.com/item?id=28838716
https://news.ycombinator.com/item?id=28838716
https://news.ycombinator.com/item?id=28838716

During execution, if the active concurrent workers exceed 20 (set value), the
Lambda function accepts the 21st and subsequent concurrent invocations as an
on-demand basis where workers get allocated with cold starts.

More importantly, there is a significant difference in Lambda performance after
implementing Provisioned Concurrency, as shown below.

Figure 11 - Performance Comparison of Provisioned Concurrency

Figure 11 shows the results of Two Lambda functions (with/without Provisioned
Concurrency) and how it handles 10,000 requests through the API Gateway.
The Lambda without Provisioned Concurrency creates high latency as work-
ers need to initialize due to growing requests. The Lambda with Provisioned
Concurrency provides responses under 500ms.

Therefore, AWS recommends using Provisioned Concurrency over function
warmers to obtain low latency at a constant rate.

Optimizing the Worker Runtime Language and Memory Allocation

The memory allocated to the worker and the runtime language of the worker
can be optimized to bring low latency.

Firstly, runtime languages such as Java and C# create high cold start times as
VMs must get spun up. However, it can be solved with Provisioned Concurrency.
But, this increases the cost for the Lambda function. Therefore, it is essential
to write Lambda functions in an optimal language.

10

https://aws.amazon.com/blogs/aws/new-provisioned-concurrency-for-lambda-functions/

Figure 12 - Lambda cold start delay for each language (Provided by
Aleksandr Filichkin)

Figure 11 illustrates cold start delays for Lambda functions written in all sup-
ported Languages across different memory types. For example, it shows that
with 10GB of memory, there is a 3-second cold delay in Java and a 1-second
delay with .NET. Therefore, some of your Lambda functions will not even start
with 128MB of memory on .NET and Java and may timeout.

However, Rust, Node.JS, Python perform well and have minimal cold start
delays (< 1 second). Therefore, write your Lambda functions in these three
languages to achieve less latency.

Secondly, the memory allocated for a Lambda function must be optimized. This
is solely based on your use case. If your computation is CPU intensive, more
memory will help increase your performance.

Therefore, a recommendation accepted by the Serverless community is to per-
form a trial and error method to optimize the memory allocation effectively.

The best way to accomplish this is by using the AWS Lambda Power Tuning
tool. It accepts a Lambda function ARN. It invokes the function on various
memory configurations from 128MB to 10GB, analyses the output logs, and
suggests optimal configurations to achieve less latency at a lower cost.

End Service Optimization

Fixing cold starts can still create high latency in the execution time. It is caused
due to end services that integrate with the Lambda function. Therefore, they
must get optimized to provide faster execution times, thus, reducing latency.

When a Lambda function integrates with an end service, ensure to configure
the following.

Timeouts on End Services

11

https://filia-aleks.medium.com/aws-lambda-battle-2021-performance-comparison-for-all-languages-c1b441005fd1
https://github.com/alexcasalboni/aws-lambda-power-tuning

Amazon Cognito has a default timeout of 5 seconds with three retries for Lamb-
das. This can cause significant performance issues.

For example: when executing DynamoDB operations, it may exceed 5 seconds,
and as database queries are asynchronous, the retry will not stop the previous
database query. Therefore, the database query gets invoked more than once.

You may face this issue when using Cognito Lambda triggers. For instance,
if you have multiple DynamoDB queries to store the user information in the
database inside the Cognito user confirmation Lambda trigger, it’s likely to
exceed the 5-second mark and fall back to retries. To fix it, you have to increase
the default timeout of the Lambda function associated with Cognito

Retry limit

Configuring the retry limit is helpful when we use DynamoDB with AWS SDK.
DynamoDB has a retry rate of 10 times with exponential backoff by default.
Therefore, a Lambda could get delayed up to a noticeable latency of 5 seconds
because of the exponential backoff. Thus, for applications that require minimal
execution latency, use no retries for Lambda functions.

Summary
A Lambda function takes away the complexity of maintaining servers allowing us
to focus on writing the code for the function. However, a Lambda function has
room to generate high latencies and delayed responses due to misconfigurations.
These misconfigurations and fixes are summarized below.

12

Figure
13 - Recap of the content covered in this e-book

These tips will help you decide on the best solutions to implement, ensuring
faster Lambda functions with low latency in the future.

13

	Introduction to Lambda Functions
	Advantages using Lambda Functions
	Addressing Latency in Lambda Functions
	Cold Starts
	Memory Allocation to Lambda Functions
	Lambda Runtime Language
	Service Integrations with Lambda Functions

	Accelerating Lambda Functions
	Summary

